2P29L/4P1L PSE Amp

No Gravatar
Looking for more

Looking for more

Well, ok. You want more power from previous 4P1L PSE amp? Here is an alternative approach:

2P29L into 3x4P1L PSE

2P29L into 3x4P1L PSE

You can get 5W at 2% THD maximum. I’d rather avoid filament bias at the output stage and instead apply fixed bias and a source follower driving the 4P1L stage. Best performance, lower THD at high output power. However, the above circuit is dead simple to implement without adding extra complexities!

 

2P29L – Preamp and driver for 4P1L PSE Amp

No Gravatar

A very interesting Russian directly-heated pentode related to 4P1L is the 2P29L. It has a similar mu (μ=9), much higher anode resistance 2.8-3KΩ and transconductance of 3mA/V when triode-strapped. The filament requirements are much lower at 120mA. I picked one valve from my collection to submit it to the mercy of the curve tracer:

2P29L test point (pentode)

2P29L test point (pentode)

The triode curves are really nice:

2P29L triode curves and model

2P29L triode curves and model

This valve is as linear as the 4P1L (hooray). As a preamp it can be easily implemented like the 4P1L Gen2 preamp using a gyrator PCB which simplifies the building process:

2P29L preamp

2P29L preamp

Running it at 15mA and slightly above the recommended 160V achieve its lowest distortion.

We could also use this valve as a driver for a 4P1L preamp, which comes very handy for filament bias:

2P29L-4P1L PSE Amp

RL12P35 German Transmitting Pentodes

No Gravatar

It was pure lust and love at first sight. I found the RL12P35 german transmitting pentodes and couldn’t resist in buying them. A very nice set of NOS Telefunken and Valvo valves with also NOS sockets. These pentodes look like a de-rated LS-50/GU-50 and very interesting candidates for a nice PP amp:

These have been used by Lorenz to build the classic and lovely PP amp LVA/BA30 RL12P35 Amp with anode to grid feedback (i.e. a la Schade) like the below amplifier:

Continue reading

Filament Bias: a practical example with 3A5 DHT

No Gravatar

Introduction

cartoon-july4_0006

Recently I was asked about whether I could write on my blog about how to design a filament bias stage. My immediate answer was:

  1. I don’t have much time these days am afraid to write extensive articles (and sometimes to even write-up at all)
  2. Thomas Mayer has written about it (see here). Of course, I completely forgot that Thomas never completed his intended series of posts around filament bias, so I decided to attempt explaining the practical aspects of its design in this blog.

Before you continue reading this post, I suggest you read first Thomas’ article above and get yourself acquainted with DHTs and triode amplification. I’m not going to cover any of that theory which I will give it for granted that the reader is experienced with valve circuits and in particular with the hybrid mu-follower amplification stage with gyrator load.

3A5 DHT example

Continue reading

Gyrator Test Mule: 4P1L Preamp

No Gravatar
4P1L gyrator test mule

4P1L gyrator test mule

It’s always great to come back and revisit a great design. The 4P1L preamp performs flawlessly so I tweaked the gyrator board to see how it worked with the BF862 FET. The result is great, it sounds as good as it measures:

4P1L Test gyrator board

The 4P1L is biased to 150V/25mA which is the maximum current that the BF862 can do (IDSS max). You can see that the frequency response is flat up to 1.5MHz. The LF response of my test mule is affected by the AC coupling of the measuring gear. However it should be around 5-10Hz.

The distortion of low-level signals is really good:

THD @ 4Vrms

THD @ 4Vrms

Predominantly H2, it’s very nice to see THD<0.015% for a 4Vrms output. The load is 100KΩ which is the typical input impedance of an amplifier (with exception of solid state gear)

This low distortion manifests across the entire audio band (ignore the THD below 20Hz which is a byproduct of my testing gear):

THD version frequency @ 4Vrms

THD version frequency @ 4Vrms

The nice thing to see also, it’s how well the 4P1L can drive larger voltage swings:

4P1L THD @ 10Vrms

4P1L THD @ 10Vrms

We can see H4 popping up, however odd harmonics are lower (H5 in fact is higher than H3). THD at 10Vrms is still below 0.03%!

 

 

Alpair 10M / FT96H speakers

No Gravatar

It’s been a long time since I haven’t tweaked my speakers. After more than 9 years I decided to change the drivers after falling in love with the Alpair 10M from Mark Audio. I listened to my friend Andy’s system (4P1L PSE driving the Alpairs) and decided to get hold of them.

A simple upgrade

As I don’t have much time left for DIY audio these days, I needed a simple solution. I couldn’t build a new set of speakers despite the love I have for some horn-type designs. Bringing new speakers was out of the question, so I had to modify my existing boxes to replace the FE167E. Sadly they didn’t fit straight on, so my friend Tony made me a pair of adapter boards to fit these. Made of MDF I painted them in grey:

Altair 10M Gen3 with FT96H horn tweeter

Altair 10M Gen3 with FT96H horn tweeter

Continue reading

27 Preamp

No Gravatar

An IHT preamp, oh yes!

I always loved the 27 valve. It was one of the first line stages I built many years ago before adventuring in the DHT world. I still have a large collection of them and I was very fond of the mesh anode ones. Please check Thomas’ blog in which he wrote a very nice note about it.

With the hybrid mu-follower (a.ka. gyrator) configuration, we can build a minimalistic and great preamp stage. The 27 has a mu of 9, so in some scenarios this may be a bit too much gain, but for many cases, it’s just what we need to drive the valve amps. Someone recently asked me for help on this, so here it goes my version:

27 Preamp v01The circuit is dead simple. The 27 is biased with a battery via a grid leak resistor (R1). C1 blocks DC from input and contributes to LF response by forming a pole with R1. 150nF is good enough but if you don’t have any, use 220nF. The operating point is 6mA looking at my old notebook. The supply doesn’t need any funky regulation, and 180-200V should do. The top FET should be either DN2540 or any other depletion of your choice. The lower JFET should be either a 2SK170GR or 2SK170BL (preferably). You can use a J310 here as well (or SMD BF862).

The sound is beautiful and THD is very low driven by H2 only, as you would expect from this triode.

If you don’t want battery bias, you can add a 1K5 resistor in the cathode with its decoupling cap and remove the battery and C1. R1 should be changed to 47k then.

Hope you enjoy this!

Ale