Hybrid Mu-follower Output Impedance

Where to start?

Well, I often get the question “what is the output impedance of the gyrator circuit?”. My response has always been “it gets close to 1/gfs as a good approximation”. Recently, I was asked the question again, but this time I decided to crack on the formulae, which is a daunting task for someone who has ditched calculus after obtaining Ms in Engineering degree more than 20 years ago.

For simplification let’s start with a simple hybrid mu-follower stage (a.k.a. Gyrator load) like the following:

Continue reading “Hybrid Mu-follower Output Impedance”

SiC MOSFET Follower Driver

How many more times

Led Zeppelin wrote a fantastic song on their first album: how many more times. You may not be a rock fan, but hey: what a great song. How many more times do I want to get back to this “slew rate” theme? I don’t know, as much as I have to. Plenty of comments out there of bad designs with wimpy drivers attempting to take the 300B/2A3 or even 45 valves to full tilt with disappointing results. Either way, they always blame the valves.

I came back to revisit the driving of capacitive loads effectively as I’m working on a new 4P1L PSE amplifier. Slowly, but getting there. Previously I looked at adding a buffer to the 01a preamp as a result of slew rate limitations found in Tony’s implementation of this preamp.

buffer

 

 

The circuit design

Continue reading “SiC MOSFET Follower Driver”

Filament Bias: a practical example with 3A5 DHT

Introduction

cartoon-july4_0006

Recently I was asked about whether I could write on my blog about how to design a filament bias stage. My immediate answer was:

  1. I don’t have much time these days am afraid to write extensive articles (and sometimes to even write-up at all)
  2. Thomas Mayer has written about it (see here). Of course, I completely forgot that Thomas never completed his intended series of posts around filament bias, so I decided to attempt explaining the practical aspects of its design in this blog.

Before you continue reading this post, I suggest you read first Thomas’ article above and get yourself acquainted with DHTs and triode amplification. I’m not going to cover any of that theory which I will give it for granted that the reader is experienced with valve circuits and in particular with the hybrid mu-follower amplification stage with gyrator load.

3A5 DHT example

Continue reading “Filament Bias: a practical example with 3A5 DHT”

27 Preamp

An IHT preamp, oh yes!

I always loved the 27 valve. It was one of the first line stages I built many years ago before adventuring in the DHT world. I still have a large collection of them and I was very fond of the mesh anode ones. Please check Thomas’ blog in which he wrote a very nice note about it.

With the hybrid mu-follower (a.ka. gyrator) configuration, we can build a minimalistic and great preamp stage. The 27 has a mu of 9, so in some scenarios this may be a bit too much gain, but for many cases, it’s just what we need to drive the valve amps. Someone recently asked me for help on this, so here it goes my version:

27 Preamp v01The circuit is dead simple. The 27 is biased with a battery via a grid leak resistor (R1). C1 blocks DC from input and contributes to LF response by forming a pole with R1. 150nF is good enough but if you don’t have any, use 220nF. The operating point is 6mA looking at my old notebook. The supply doesn’t need any funky regulation, and 180-200V should do. The top FET should be either DN2540 or any other depletion of your choice. The lower JFET should be either a 2SK170GR or 2SK170BL (preferably). You can use a J310 here as well (or SMD BF862).

The sound is beautiful and THD is very low driven by H2 only, as you would expect from this triode.

If you don’t want battery bias, you can add a 1K5 resistor in the cathode with its decoupling cap and remove the battery and C1. R1 should be changed to 47k then.

Hope you enjoy this!

Ale

01a Preamp Gen2

The return of the 01a stage

SX201a in actionI remember my first 01a pre-amplifier to be one of the best sounding ones I ever had. The uniqueness of its tone, detail and clarity was astonishing. Perhaps it is due to the warm tone it provides and I guess this is the reason why Thomas Mayer branded his design as the “sound processor”.  I fell in love with the sound of a CX-301a and the joy of listening to this stage was so great that I found a fantastic excuse now to re-build this stage. My Starlight Discrete DAC has a very low output due to the step down transformer it has. I can only get 500mV as maximum output level. Not enough to drive my system to full level.  This was a perfect argument for me to look at building a simple amplifier stage that could add the sonority of the 01a in my system.

Continue reading “01a Preamp Gen2”