cx-112a DHT preamp

Introduction

This was one of my first DHT preamps. I found a quartet of NOS CX-112a Cunningham (globe) back in Buenos Aires many years ago and built one of my first DHT preamps. I loved it. I played with it before I moved into the 26 and then started the long exploratory journey with DHTs. 

The CX-112a can be easily fit in an existing 01a preamp. Take a look at what Thomas Mayer recently blogged about this valve, worth reading it. 

Well, you can get more current drive than 01a (nearly double) but no thoriated tungsten filaments. Anyhow, the gain is slightly higher but is very easy to adapt to my gyrator-based circuit, that I couldn’t resist to take the quartet out of my valve stash and make them sing again after so many years.

Continue reading “cx-112a DHT preamp”

VT-25 DHT Preamplifer

VT-25 in action 

Now I’m back from our long trip, I found some time to play with the “Mule“. I wanted to revisit my old VT-25 preamplifier. Many years ago I had my first VT-25/10 preamplifier which was based on a gyrator load. Then it morphed to a transformer coupled (LL1660/40mA) version to drive my TVC before I settled into the 4P1L for some long time. 

The circuit design

The VT-25 has always been on my list of favourite DHTs. It’s gone ridiculously expensive these days and is hard to get. I have a couple of pairs in very good shape luckily. 

Continue reading “VT-25 DHT Preamplifer”

“Schade” SE Amp Example

Introduction

On my last post I covered how the gyrator PCB can be used in a pentode driver. The pentode driver is the best candidate in a “plate to plate” / shunt feedback or “Schade” feedback amplifier which is the name typically used in the DIYAudio world. The triode doesn’t work well here as you need high gain and low distortion with a load which can get quite low (due to the feedback effect of the feedback resistor). I’m not going to cover the subject as it has been covered (and discussed) extensively before by many people, so I suggest you do a bit of research yourself if you are interested in the subject and want to learn more. 

A Study example

Continue reading ““Schade” SE Amp Example”

6Э5П Shunt Cascode Driver

Introduction

The main challenge when implementing valve amplifiers using transmitting valves or valves which require a significant voltage swing (e.g. 300B, 45, etc.) is the driver. Getting the driver right is not easy. You’re asking for a single stage to swing 150 to 200Vpp at minimum distortion. There are some ways you can achieve this:

  1. Implementing 2 stage voltage amplification. Here is where we find a lot of bad designs and poor results. Sometimes the 300B gets a bad reputation due to a wimpy or poor driver. Many designs out there use 2 stages of 6SN7 for example. Nothing wrong about using the 6SN7, however when you cascade 2 stages the sound is muddled at low levels. Harmonic profiles may be encouraging but they simply don’t sound great.
  2. Implementing a high-mu driver stage. There are several high-mu drivers out there than can swing plenty of volts. 6Э5П, 6Э6П, 6j52P, 6j49p-DR, E280F, C3g, etc. They work well, specially if you couple them with a gyrator, you can achieve hi gain. If you opt for degenerating the cathode resistor, the gyrator still provides a low output impedance to avoid degrading it due to the degeneration resistor. I’m a big fan of this approach. The only disadvantage is that you need a buffer/line-stage capable of driving the Miller capacitance. I have a nice preamp/line stage so this isn’t a problem to me.
  3. Implementing a pentode driver. Pentode don’t suffer from Miller capacitance. However, you need to find the right driver, not all sound well in my experience. I like the 4P1L and C3g. You can use a gyrator load with pentodes as well. Some folks complain about the pentode harmonic signature. I think this is a question of personal taste. 
  4. Implementing a shunt cascode driver. Hey, this is what this post is about! There are several benefits already discussed at length on this topology.  If you need high gain and minimum capacitance load (e.g. Miller) as you have a DAC output for example, this is what you should look into. The Shunt Cascode operates the triode in a vertical load line (not horizontal like the CCS or gyrator).

Design

You should start by reading this extensive blog post. That will provide you with a lot of information around the shunt cascode and how it works. Back in 2013 I started playing with the 6Э5П in this topology. It was quite promising. Now, I have revisited and built this driver to see how it really performed.

The design is very similar to what we discussed back then. I shall proceed in describing the circuit, in particular the changes made. The driver is still the marvellous 6Э5П. There are few valves out there that I don’t like as much as I do with the 6Э5П. I measured the curves long time ago when I started with the curve tracer project. I also tested the 6Э5П and 6Э6П extensively. I do love the 6Э6П as well, it’s one of my favourite drivers.

The 6Э5П is biased at about 200V/30mA with a degeneration cathode resistor of 120Ω. As the gain of this stage isn’t dependent on the μ of the valve, then is good to do this to improve the linearity of the driver. M2 forms a CCS with Rmu. It provides the current to the 6Э5П as well as the current to the common base stage formed by Q1 and Q2. The gain of this stage is gm times R5. The gm is the valve’s transconductance The collector current of the MPSA92 is kept low to ensure distortion is minimised as well as its operated under SOA. D3 provides a protection to the darlington pair when is reversed biased. 

The gain of this stage was measured to be x140 (or 43dB). That equals to a degenerated transconductance of 5mA/V with a cathode resistor of 120Ω and a gain resistor for 27kΩ. 

6e5p-shunt-cascode-driver-final

 

Continue reading “6Э5П Shunt Cascode Driver”

Tony’s 01a Preamp

IMG_3291I went to see my friend Tony today and helped him to fix his 01a preamp implementation. Time ago Tony used a prototype version of my gyrator PCB to build the Gen2 preamp with the addition of an output follower to address the slew rate limitations he had on his system due to the larger capacitive load.

Luckily we found the fault easily and it was a bad solder in one of the smoothing HT chokes. Once fault was rectified, we proceeded to take some measurements of this preamp.

Continue reading “Tony’s 01a Preamp”

2P29L – Preamp and driver for 4P1L PSE Amp

A very interesting Russian directly-heated pentode related to 4P1L is the 2P29L. It has a similar mu (μ=9), much higher anode resistance 2.8-3KΩ and transconductance of 3mA/V when triode-strapped. The filament requirements are much lower at 120mA. I picked one valve from my collection to submit it to the mercy of the curve tracer:

2P29L test point (pentode)
2P29L test point (pentode)

The triode curves are really nice:

2P29L triode curves and model
2P29L triode curves and model

This valve is as linear as the 4P1L (hooray). As a preamp it can be easily implemented like the 4P1L Gen2 preamp using a gyrator PCB which simplifies the building process:

2P29L preamp
2P29L preamp

Running it at 15mA and slightly above the recommended 160V achieve its lowest distortion.

We could also use this valve as a driver for a 4P1L preamp, which comes very handy for filament bias:

2P29L-4P1L PSE Amp

CX371a / 71a DHT Preamp

71a DHT Preamp
71a DHT Preamp (2012)

More than 4 years ago I ran a lovely 71a preamp which sounded amazing. I used it for some time and enjoy its sound up until I continued with my exploration around DHT preamps. Recently I was asked about how to implement this lovely valve again.

The CX371a / 71a valve is a great candidate for a line stage with its low mu and anode resistance. In my experience you have to run it above 20mA and over 100V to get the best out of this valve:

CX371a curves
CX371a curves

The implementation of this preamp is dead simple and a few components are needed on top of the gyrator PCB:

CX371a DHT preamp

 

I haven’t starved the filaments as I found this valve not to be microphonic. If you have an 01a preamp you can modify it slightly. The interesting thing is that you can run it with just 180V. Even 150V should work and you need 25mA on each channel. A J310 or BF862 lower JFET device will work fine and you will need a heatsink for the top device (e.g. DN2540). Filament resistor is anything close to 50Ω. I used some 51Ω Russian NOS wire wound resistors, but any combination will be fine.

Enjoy

Ale

Sweep buffer

I’ve been using my sound card and Pete Millett’s interface for testing. However, the limitation on high frequency response is due to the sound card. A cheap, but yet effective option, is to use the Chinese digital oscilloscope Instrustar ISDS2062B which comes with built-in DDS signal generator with sweep capability. With this little piece of technology, you can sweep up to 10Mhz. The resolution is 12bit, not great for FFT but good enough for a FR analysis. For frequencies above 20kHz, you can use this device to look into things. For FFT and THD analysis, I will keep using the sound card and audio interface as usual.

When I test the device, I found that the DDS output didn’t have the stones to drive loads at HF. Therefore I went back to my workshop and built the following sweep driver. This was based on the great SSM2019 that my friend Mogens sent me:

Sweep buffer based on SSM2019
Sweep buffer based on SSM2019

The circuit is very simple. It’s operated from a pair of 9V batteries. So far, I’ve tested with the 20dB (actually 19dB gain due to 1kΩ resistor at hand) and 0dB gain modes.

The response is good enough for my purposes:

SSM2019 sweep test

I can get 1.5Mhz @ 19dB or 3Mhz @ 0dB gain HF response which is great. I now need to test it again with a real load.

 

Slew Rate (Part 2)

Get thy bearings

Merry Christmas to all!

When I was still a teenager and learning saxophone I came across this wonderful version of “Get thy bearings” by King Crimson. The power of the electrified alto sax  blew me out my mind. Ian McDonald clearly found a way to drive the saxophone there and bring a new sound to the 1969’s progressive rock. Surely he didn’t experience any of this slew rate thing 🙂

In my previous post, I explored the slew rate challenge of the 01a preamp:

IMG_3034

Continue reading “Slew Rate (Part 2)”

CCS: not everything that glitters is gold (Part I)

Introduction

This is the first instalment of a series of blog posts around CCS for valve circuits. Hope you enjoy it as much as I did with the experiments conducted as a result of my interest in CCS-driven circuits.

The depletion cascoded CCS

It’s been long time since I’ve done some circuit analysis and algebra, hopefully I’ve got this right. Seems to get to the expected result, so hey: I’ve done it ok.

The analysis of this circuit starts by using the T-model of the MOSFET. I’ve omitted the parasitic capacitances to simplify the analysis. I leave you the challenge to add them in though. If we look at the typical self-biased depletion FET CCS we can find the output impedance by doing the following formulae crunching:

CCS zout formulae1In summary, the output impedance looking from the source side is:

Zout\approx Rs+\left ( 1+Rs\cdot G_{m} \right )\cdot r_{o} \approx Rs\cdot G_{m}\cdot r_{o} = Rs\cdot\mu

Continue reading “CCS: not everything that glitters is gold (Part I)”