DHT Pre-amplifiers

Alejandro Moglia

ETF.18 @Bellême, Nov 2018

An unorthodox approach...

Purpose of today

Sharing my experience on DHT preamps throughout my long journey in combining quite a lot of sand in hollow circuits

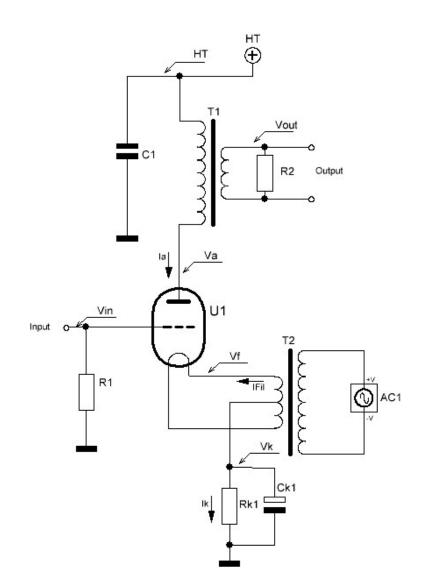
About Myself

- Background
- Hobbies
- Audio

Why DHT in Pre-amps?

What we can hear

- Timbre
- Detail
- Distortion
- 3D image


What we can measure

- THD and IMD
- Harmonic profile
- Impulse, frequency & phase response

www.bartola.co.uk/valves

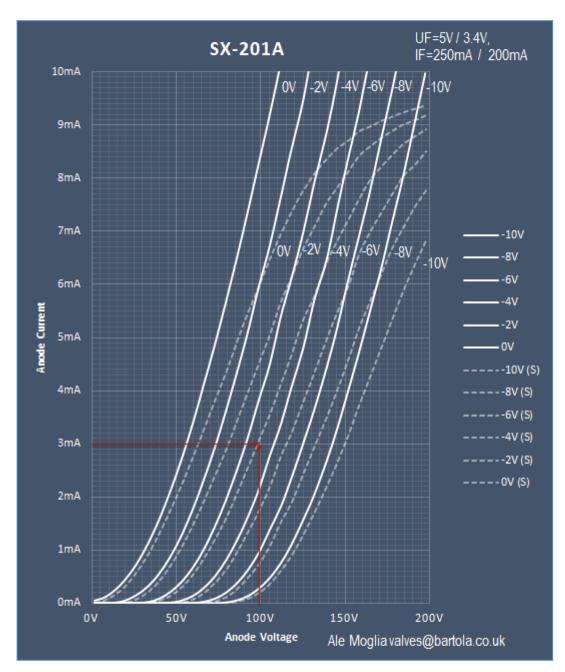
Closeness

The Traditional Approach

- Advantages
 - Lower gain and output impedance
 - Simplicity
 - Galvanic isolation
- Disadvantages
 - Quality of OPT
 - PS isolation
 - Heater IM distortion
 - Cathode cap

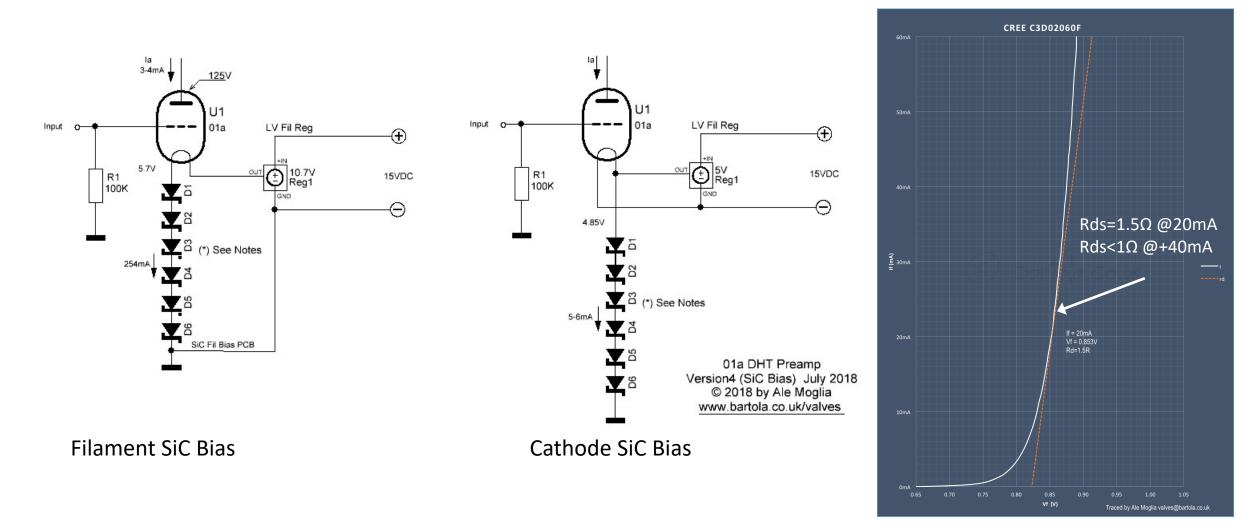
The DHT Pre-amp Challenges

- Microphonic noise
- Hum
- Power supply complexity
- Load demands
- Bias arrangement
- Weight, heat and space!
- Gain (too much or too little)
- The DHT itself cost, age, etc.

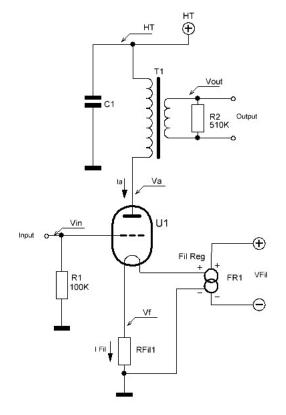

What I've Learnt Over The Years

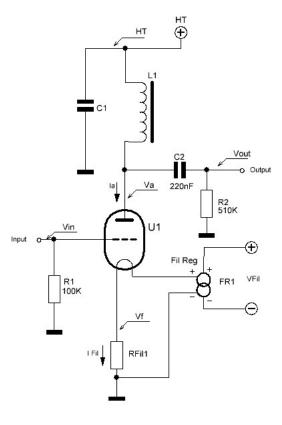
- What goes in the cathode is as important (or more than) as the anode load
 - Filament bias
 - SiC Diodes
- Filament supply
 - DC regulators
 - Choke input raw PSU
 - Filament starvation

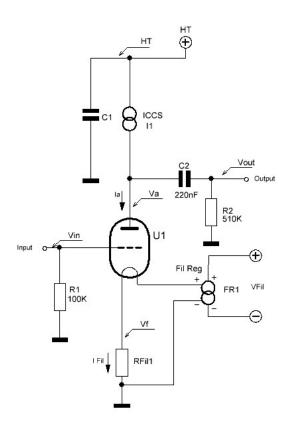
- Keeping the noise down
 - Ground scheme and layout
 - Multi-chassis
 - Microphonic noise
- My preferred topologies and anode loads
 - Hybrid µ-follower (aka Gyrator)
 - Choke
 - CCS (with μ-output)
 - Transformer


Filament Starvation

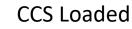
- Reduced microphonic noise
- Reduced emission
- Increased ra, reduced gm and (nearly) constant $\boldsymbol{\mu}$
- Reduced distortion
 - Increased region where gm, ra and μ are constant [5]
- Reduced valve life
 - Surface-level barium depletion (Oxide Fil)
 - "Cathode stripping" (TT filaments)

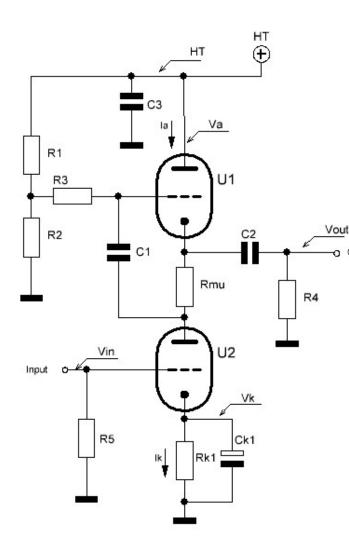



Bias Using SiC Diodes


C3D02060F Example

DHT Pre-amp Evolution

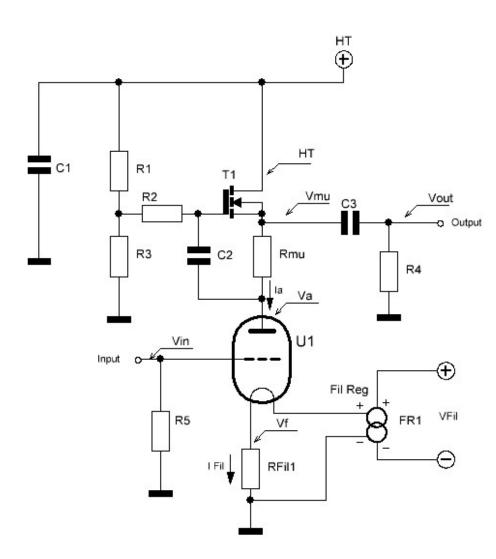




Transformer Loaded

Choke Loaded

The μ -follower

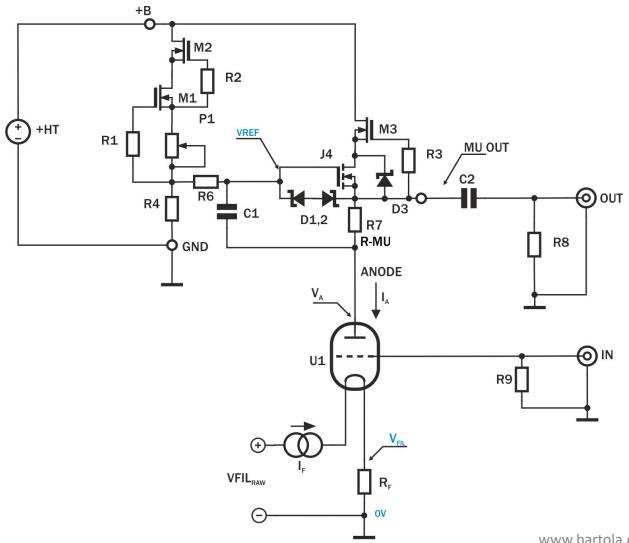

Advantages

- Push-pull
- Low output impedance
- Lowest distortion when optimized for specific load
- Higher bandwidth
- U1 Pentode: constant gm, lower distortion and better PSR

Disadvantages

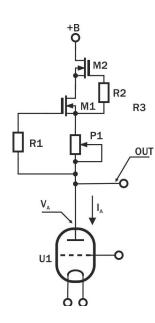
- HT to accommodate full output swing
- Optimisation only for a specific load
- Heater supply (and elevation)
- The higher $R\mu$, the lower the current drive

The Hybrid μ -follower

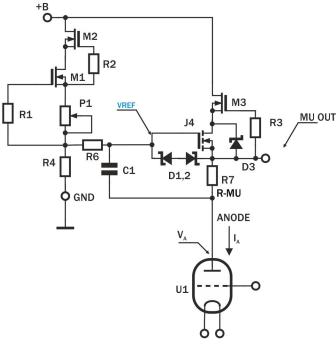

Advantages

- Use of higher gm part:
 - Lower output impedance
 - Lower distortion (Rµ bootstrapping)
- Simplified heater supply

Disadvantages


- MOSFETs protection
- Device Unbalance

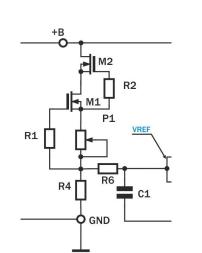
The Hybrid μ -follower Evolution

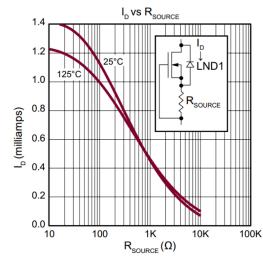


- CCS Voltage reference
 - Power supply isolation
 - Voltage stability
- Cascoded FET pair
- Improved HF response and lower output impedance:
 - J4: high Gfs and low Crss
 - M3: High VGS(off) -> reduce J4 Crss and Coss
- Keeping C1 value low

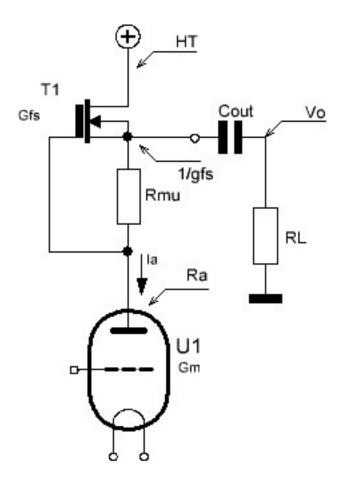
CCS vs Hybrid μ -follower

	CCS	Hybrid μ-Follower	
Valve parameter fixed	Anode current	Anode Voltage	ſ
Output impedance	Mid-High (anode resistance)	Very Low (1/gfs)	
Mode	Single-ended	Push-Pull	
Complexity	Low	High	
Low impedance loads	No	Yes	


The CCS Reference Voltage



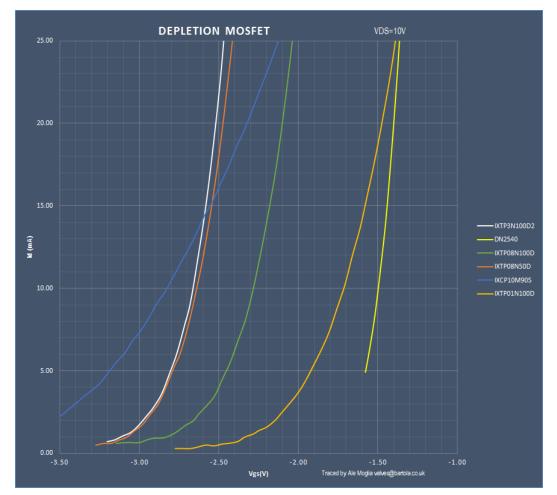
- Lowest TEMPCO [4] for LND150 measured:
 - $Vgs_{off} = -1.6V$
 - $I_{DSS} = 1.8mA$
 - $Vgs_{(0TC)} = Vgs_{off} 0.63V = 0.97V$


•
$$I_{DZ} = I_{DSS} \cdot \left(\frac{0.63V}{Vgs_{off}}\right)^2 = 0.28mA \rightarrow$$

•
$$Rs = \frac{Vgs_{(0TC)}}{I_{DZ}} = 3.47K\Omega$$

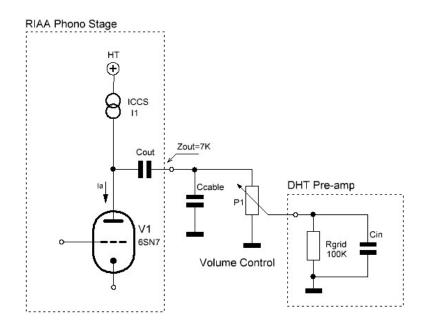
Some Math...

• For totem-pole current balance $g_{fs} = g_m \text{ so } R_\mu \cong \frac{1}{g_m} \text{ for current}$ balance in the load


• Output impedance:
$$Z_0 = \frac{R_a + R_\mu}{1 + R_\mu \cdot g_{fs}}$$

• For a low
$$R_a$$
 then $Z_0 \cong \frac{1}{g_{fs}}$

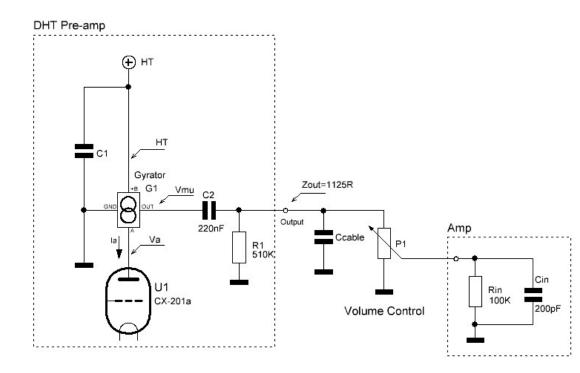
FETs and MOSFETs: an Endless Tale


	LSK170	BF862 (*)	BSH111BK	DN2540	BSN20BK	BSP149	RU1C001UN	
Ptot (W)	0.4	0.3	0.3	1	0.31	1.8	0.15	
VDS	40	20	55	400	60	200	20	
VGS off	2	-1.2		-1.5	1	-1.4		
IDSS (mA)	12	25	210	120	265	660		
Gfs (mS) (*)	22	45	640	300	710	800	180	
ld Gfs (mA)	18	18	200	125	200	480	100	
Id (mA)	10	10	10	10	10	10	10	
Gfs @ Id (ms)	16	34	143	85	159	115	57	
Ciss (pF)	20	10	19.1	200	20.2	326	7.1	
Crss (pF)	5	1.9	1.5	1	2	17	1.7	
Coss (pF)			2.7	12	3.1	41	3.3	
1/gfs (ohms)	61	30	7	12	6	9	18	(

HV Depletion MOSFETs (Id vs Vgs)

(*) EOL now, 2SK3557 and CPH3910 instead

Where To Place The Volume Control?



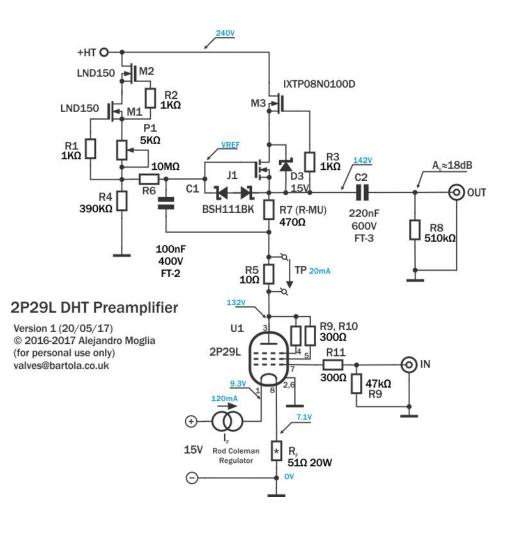
Can we use a 20K vol. control at the input of the DHT pre-amp?

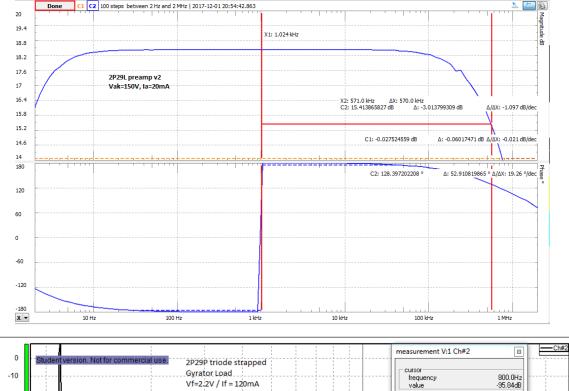
Example 1

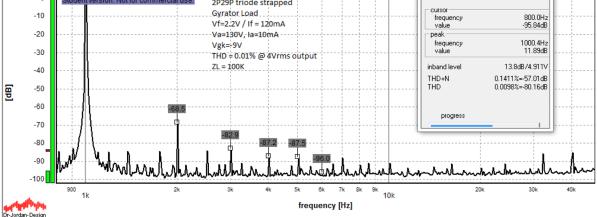
- Short interconnect cable ($C_{cable} \approx 200 pF$)
- DHT preamp valve is 10/VT-25:
 - $C_{in} = C_{gk} + (\mu + 1) \cdot C_{ag} \approx 70 pF$
- If volume control is $20K\Omega$ (90% position):
 - $f_{-3dB} = 123kHz$
- If volume control is 100KΩ (90% position):
 - $f_{-3dB} = 98kHz$

Can You Drive Me?

Can the DHT Pre-amp drive 5m cable?


- 5m interconnect: ($C_{cable} \approx 1.1 nF$)
- CX-201a follower $R_{OUT} \cong 1125\Omega$ for $R_{\mu} = 470\Omega$ and $G_{fs} \cong 20mS$ @ $I_a = 3mA$
- If volume control is 20KΩ (90% position):
 - $f_{-3dB} = 118kHz$
 - However, $C_2 \ge 1\mu F$ for $f_{-3dB} = 9Hz$


• Slew rate limitation:

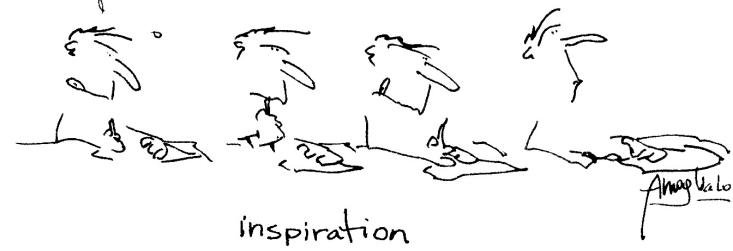

•
$$I_C = C \cdot 2\pi \cdot f \cdot V_{peak}$$

• If $I_A = 3mA$ and $V_{peak} = 10V$ then
 $f_{max} = \frac{I_A}{C \cdot 2\pi \cdot V_{peak}} = 36$ kHz

- For $f_{max} = 100$ kHz then $I_A = 8mA$.
- Source or cathode follower solution

A Practical Example: 2P29L

Valve	Timbre & Detail	Microphony	Current Drive	Gain	Notes
801a 10-Y VT-25	:	•		М	 Challenging for filament bias (heat) but doable Thoriated-tungsten filaments ER801a a great option!
01 a	:	•	•	М	 Be careful with old valves and microphonic devices Great for filament bias Thoriated-tungsten filaments
2P29L	:	•		М	 Still cheap and plentiful Remove the aluminum can and use it naked! Great for filament bias
Aa / Ba	:	•	•	н	 Rare and expensive Ba picks too much hum – needs shielding Good for gain but needs SF/CF stage
4P1L	:	•		М	 Still available Easy to match pairs Can be very microphonic
26	:	•	•	М	Be careful with old valves and microphonic valves
199	:	•	•	М	 Very microphonic Old and scarce, Variance between samples Short pin UV99/199
45 / 46	:			L	Bias levels prevents filament bias useLow gain
112a	•	0		М	• Better current drive than 01a, but lack of thoriated tungsten filaments
RE-804	:		•	н	Hard to find in NOS. Valvo brand is best.
71a	•			L	- Low $\boldsymbol{\mu}$ and anode resistance. Ideal for line stage when gain isn't needed


Closing Note

- DHTs sound is unique and worth the trouble
- Don't underestimate role of power supplies
- Right topology for your system
- Don't be afraid of sand 😳

Acknowledgements

- Morgan Jones
- Rod Coleman
- Andy Evans & Tony Rees
- Tom Browne

References

- 1. Alan Kimmel's "Mu Stage Philosophy" <u>http://www.fetaudio.com/wp-</u> <u>content/uploads/2003/09/Mu-Stage.pdf</u>
- 2. Gary Pimm's website (archived)
- 3. Morgan Jones' "Building Valve Amplifiers"
- 4. Linden T. Harrison's "Current Sources & Voltage References"
- 5. Steve Bench's "Directly Heated Triodes operated with lower voltage on the filaments"
- 6. SRPP theory and evolution:
 - 1. John Broskie's "SRPP deconstructed", "SRPP+"- <u>www.tubecad.com</u>
 - 2. Merlin Blencowe's "The Optimised SRPP Amp" <u>http://www.valvewizard.co.uk/SRPP_Blencowe.pdf</u>

Thank You!

Alejandro Moglia <u>www.bartola.co.uk/valves</u>

valves@bartola.co.uk

- www.bartola.co.uk/valves