300B SE Amp: 47 Driver

Going DHT end to end

As previously mentioned, I played around with the 46 driver.  I love it sound and is a great valve. However, there were 2 reasons that pushed me to switch to the 47. Firstly, I wanted an extra tad of gain. Secondly, I have a nice stash of RCA 247 globe which measure extremely well. I’ve been reserving it for a 47 PP amp with local feedback (a la Pimm) and hopefully will get to in the future. Anyhow, the 47 in triode mode has a mu of about 8 which in combination with the SUT, gives me good gain to drive my 300B. After tweaking on the bench the stage for optimal swing and distortion performance, I ended up with the following circuit:

Continue reading “300B SE Amp: 47 Driver”

3 versions of the gyrator board

Three hybrid mu-follower (aka gyrator) board generations

From left to right: 1) Standard Rev08 PCB with full flexibility of FET and TH components. 2) Rev 1.0s board with SMD except Rmu, protection drain resistor and LED as well as space for any nice big PIO capacitor. 3) the smallest version of all, all SMD except Rmu, film cap and standard TO-220 top FET and multiturn trimmer.

Very happy with the results in the board development. It does take more time and precision (you will need a microscope) to work with the MELF resistors and the SMD components in general. However, it’s worth the trouble if you’re looking to reduce the footprint.

Hybrid Mu-follower (aka Gyrator) Rev08 PCB Update

It’s been far too long since I last posted on this blog. With the limited spare time I’ve got these days, I concentrated in setting up the new workshop and system since we moved back to our place. I’m nearly there, so now it’s time to get back to work

I made some updates to the “gyrator” PCB. I’ll stop referencing it gyrator from now on, since the name is misleading. However, it got popular that way. Nevertheless, it’s a hybrid mu-follower circuit but if only if you take the output from the anode, it behaves like a “gyrator” from a frequency response perspective. If you’re interested in this circuit in more detail, please read the lecture I gave last year at ETF.18. You can download it from here.

Back to the board, here are the few changes made:

  1. Moved the trimpot P1 for easier fixing of the board with the M3 standoffs.
  2. Added a gate stopper resistor (R9) to avoid oscillation at low anode current (<10mA) when using high-gm MOSFETs in the lower position J4. This was evident with devices like BSH111BNK
  3. Added an LED (D4) indicator and a series resistor (R8) at the drain of M3. This enables indication of:
    1. Normal operation subject to  value of R8
    2. Source current into load (e.g. like in A2 operation) subject to value of R8.
    3. Short output to ground. Depending on duration and current limitation of power supply, this may prevent damaging M3 MOSFET. Not guaranteed, but in some scenarios will work.

Continue reading “Hybrid Mu-follower (aka Gyrator) Rev08 PCB Update”

Aa DHT Preamp (Part I)

Obviously it was time to test the little brother of the “Ba” DHT. In particular, as I have such a low DAC in place now, I need the gain. With nearly a gain of 30, it’s an attractive fellow to work with.

First good sign is that it doesn’t pick up as much hum as the Ba. That’s good, nevertheless I placed a back copper plate which acts as enough earth shielding to keep the Ba quiet.

I worked with my breadboard to find a good “sweetspot”( at least electrically) for this valve. Given the low signal source level, I aimed for a low bias. I played with my fixed bias setup before replacing it with the SiC bias board. I found that 2V/160V was very good in terms of keeping the distortion profile to minimum. Here is what I ended up with:

Only 2 SiC diodes are enough. The source follower PCB is mandatory given the low anode current. I run it at 20mA (hot) to get best results of the stage. Rest of the circuit is very simple, achieving a gain of about 30. Here is the distortion profile:

There is no shielding and you can see some minor IM distortion with mains hum. Harmonic decay is nice with H2 being strongest. THD is very low at 4Vrms which is good sign. Let’s see the frequency response now:


Nearly 140kHz of bandwidth which is plenty for the stage. Great response. I just need to plug this one in and listen to this promising German DHT.

 

Hybrid Mu-follower Output Impedance

Where to start?

Well, I often get the question “what is the output impedance of the gyrator circuit?”. My response has always been “it gets close to 1/gfs as a good approximation”. Recently, I was asked the question again, but this time I decided to crack on the formulae, which is a daunting task for someone who has ditched calculus after obtaining Ms in Engineering degree more than 20 years ago.

For simplification let’s start with a simple hybrid mu-follower stage (a.k.a. Gyrator load) like the following:

Continue reading “Hybrid Mu-follower Output Impedance”

4P1L / 4П1Л Siberian Gen4 in Screen mode

Some time ago, I did some initial experiments with the 4P1L (4П1Л) with the screen performing as anode instead. Some DIYers claim the improved sound of the mesh type anodes. Kees Brakenhoff kindly sent me some PL519 to test in screen mode. He has done multiple builds with this mode of operation with great results. Unfortunately I’ve not had the chance yet to build such an amp.

What I could do instead though, was to mod very quickly my 4П1Л preamp to screen mode. It was a very easy and fast modification. I kept the same heating wiring and just adjusted the screen (anode) current down to 10mA: Continue reading “4P1L / 4П1Л Siberian Gen4 in Screen mode”

Gyrator PCB Update – Rev07

The gyrator PCB has been updated to fit now a wider variety of lower enhancement MOSFETs with low capacitance and high transconductance. The best examples are the BSH111BK and BSN20BK which are great options for currents above 25mA:

 

The board offers now all the flexibility needed in terms of different TO-92 and SOT-23 package pin-outs to use whatever FET you want.

 

4P1L (4П1Л) Siberian Gen4 – DHT Preamplifier

The return of the Siberian

After trying out so many DHTs and pre-amplifiers, I decided to wire up my 4P1L preamplifier Gen3 and fit the gyrator board to drive my 4P1L PSE Amplifier.  

I have a pair of 4P1L/4П1Л dated 1968 which are properly burnt in. I’ve used them lately in my previous preamp incarnation with great results. 

The circuit doesn’t need explanation, I think I’ve covered this repeatedly for a long time.  I will only point out the differences:

The main change was fitting a pair of Russian wirewound 27Ω resistors in parallel to get closer to the 15Ω used in this position. I found these Russian wirewound resistors to sound extremely well as filament bias resistors. I tend to be skeptical about the “sound” of some components in circuits, however, they do make a big impact in the cathode of a filament bias arrangement. 

The gyrator has my preferred combination: IXTP08N100D and BSH111BK. I have now an upgraded PCB Rev07 which fits the BSH111BK and similar FET and I will offer them shortly. 

The latter benefits from the 30mA idle current. The result is lower output impedance whilst providing a great frequency response overall.

M3 needs a proper heatsink, it does get hot with about 2W of dissipation. 

How does it perform?

Well, this valve has the reputation of amazing performance and low distortion. The gyrator setup provides the best out of this valve in my view. You can get a flat response as well as great bandwidht from 10Hz up to 3MHz loaded with 100kΩ:

The distortion is very low and is lower than 0.05% below 10Vrms. Dominant H2 with a lovely harmonic profile characteristic of this valve. 

How does it sounds?

i’ve been listening and using this valve extensively since 2011. I have to say that it sounds amazing. I never get tired of its sounds. Before I listened to a 4P1L-4P1L system and found a slight edge on the sound (probably due to its H3 component) which I don’t hear on my system. The drive, clarity and tone is amazing. It can drive the 4P1L PSE perfectly well and you get a strong and clear bass. Very powerful. My +600 hours 4P1L are very quiet in this setup, no microphonic noise. I don’t have even dampers in the 4P1L sockets!

Anyway, if you need 19dB (x9) gain in your system or you need a driver for your  SE amp, then this is the valve to go. I Still can be found cheaply and is a great contender to the thoriated tungsten filament DHTs like 01a and VT-25. 

Build this one and enjoy!

2Ж27Л / 2Z27L DHT Preamp

Back in 2012 I did some experiments with this Russian valve.  The 2Ж27Л / 2Z27L is a fantastic valve. I discovered that if I run it hot, it’s extremely linear and non-microphonic. Bingo! With its highish μ of about 16, it’s ideal as preamp stage or driver. 

Continue reading “2Ж27Л / 2Z27L DHT Preamp”

6Ж49П-ДР/6J49P-DR High Gain Stage

Time ago I wrote about this sterling Russian valve. It’s extremely linear in triode mode, sounds superb and isn’t microphonic. My friend Paul LeClerq has used it as first stage of his guitar amplifier and is delighted. A real dormer one. I hope it doesn’t disappear when valve hoarders go out and grab every big lot of valve that exists. Anyhow, I have more than I need myself, so I’m not worried.

The triode driver

Continue reading “6Ж49П-ДР/6J49P-DR High Gain Stage”