Russian PSE in Steroids (01a into 4P1L) – Part IV

AM-cartoon-serie2_0004More power

Our previous west meets east circuit can be improve further. In fact, a compromise made with the filament bias design is that coupling between driver (FET follower) and the output stage wasn’t DC. We want DC coupling to get best performance, to ensure we can drive well the output stage and provide sufficient grid current even when not operating in A2.  This can be done with filament bias, however, since we are already introducing a negative supply, I’d prefer removing the filament bias and go for proper grid bias to get best performance of output stage in terms of  maximum power and linearity.

The below circuit can be easily implemented with just few modifications from previous version:

01a-4P1L-PSE-v05

What has changed here? Not much, the coupling cap C2 is now between the gyrator and the FET follower. The gate bias resistor R6 provides high impedance to the gyrator load to ensure maximum performance of the 01a driver (minimum distortion given size of load). Not as good as previous version, but good enough. The R6 is connected to a potentiometer which sets the bias voltage. The bias voltage is derived from V2, the -50V negative supply. You can see that this circuit will put more stress into the M1 FET as now there is an additional 25V of drop across it so power burned on this device increases.

The output of the follower is directly coupled (DC) to the output stage. The filament bias resistors are removed and we use the Coleman regulators directly on the filaments of the 4P1L.

This amplifier responds better to the grid current of the output stage once the output power goes over 3.5W. At 4.5W the distortion is just above 3% (3.2%) with a 3Vpp input signal. A tad more and you can get to the 5W and a bit more into A2 operation.

Russian PSE in Steroids (01a into 4P1L) – Part III

From Russia with Love

Copyright by Justmeans
East-West Divide, Copyright by Justmeans

The interesting combination to explore from our previous designs is to mix some western valves like 01a into the Russian parade.

The result would be quite interesting, as the sound of the 01a has proven to be amazing. Therefore 01a driving 4P1L is possible as the 4P1L doesn’t need a lot of drive. Instead of using 4P1L as a driver, we can opt for the 01a which has a similar gain. What is interesting is that the voltage swing required by 4P1L wouldn’t force the 01a outside the zone in which is highly linear, hence, with some modifications, it can work as a great driver here.

The circuit

01a into 4P1L PSE
01a into 4P1L PSE

Instead of starving the filaments of the 01a, given the voltage swing requirements for a driver, we ought to drive it at full tilt. In the circuit above, the 01a hasn’t got the stones to drive the 4P1L pair, therefore we have added a cathode follower as explained here. The M1 follower will then drive easily the output stage.

 

 

Russian PSE in steroids (4P1L into 4P1L)

Introduction: DHT madness

I’m not going to dwell on DHT sound. I’d rather say that if you’re looking for a stellar DHT candidate, the 4P1L beats them all. It’s dirty cheap, reliable and sounds amazing. You can go any route you like, it’s your own decision of course. However if you’re looking for a 100% DHT amp to build, here is an interesting example for your consideration.

I’ve tried 4P1L in many topologies. The advantage of its low filament requirements is that you can implement it in filament bias and simplify the circuit significantly.

The gyrator driver using the PCB I designed recently, can be used to avoid iron and have an excellent first stage and make this Russian Amp in steroids: 4P1L driving 4P1L.

One minor caveat around 4P1L in excess. I have found (as well as many others) that if you use too many 4P1L stages (e.g. 4P1L line stage driving a 4P1L-4P1L amp) then it will sound a bit harsh in the treble. i suspect this may be explained due to the H3 component level when triode-strapped. I’d rather limit the number of 4P1L stages to two. You’ve been warned.

The other great thing about the 4P1L is that is quite consistent between samples and easy to match pairs. Also in PSE mode you can drive it to full tilt with only 20Vrms and achieve up to 5W in class A1 with a pair of valves.

Continue reading “Russian PSE in steroids (4P1L into 4P1L)”

4P1L – LL2746 driver test

After a recent discussion in the DYI Audio forum about the 4P1L drivers, I decided to do some quick tests on an idea I had around to use a step up transformer (1:4) – 4P1L and step up interstage transformer (1:2) to drive a 300B or similar using the 4P1L in filament bias.

First suspicion is on whether the 4P1L has the grunt to drive a capacitive load which would be a real challenge in a 1:2 step up as load capacitance is multiplied by 4 when impedance is reduced by a factor of N^2=4.

I built a test rig with the 4P1L in filament bias using a 15Ω wire-wound filament resistor and connected the filaments in parallel to obtain easily a nice bias voltage with 650mA of filament current. Also lower Rf will improve the low frequency response as helps keeping low the output impedance:

20140126-153912.jpg

20140126-154045.jpg
4P1L rat nest

The valve was biased at Ia=30mA / Va=160V and grid bias is about -10.2V. A 10KΩ resistor was added as a primary Zobel as per recommendation of the datasheet. Then it was replaced by a 25kΩ potentiometer (P1) and the right value was found by looking at the frequency response.

Initial tests showed a very good response at 1kHz with only 0.24% THD @200Vpp output. The gain is approximately 16. The mu of the 4P1L with paralleled filaments is around 8 and lower than when used in series which is approximately 9-10.  Albeit the results were promising initially, the real test of this stage is by looking at high frequency response where the capacitance will makes it real pain.

Continue reading “4P1L – LL2746 driver test”