01a Low Gain DHT preamp (finished)

It was a half-hour job to mod my Mule preamp by swapping out the UX-120 and introducing the 01a (CX-301a in fact), add the resistor divider to deliver low gain on this preamp:

01a mule

I set the valves at 115V/4mA. The Source Followers are running at 15mA and the resistor divider is actually 100KΩ/33KΩ (Kiwame) which is what I had at hand. It worked like a charm.

The 01a is driving my Slagle AVC into the 300B amplifier. I can say I can hear now the subtlety of the thoriated-tungsten filaments of the 01a with the extra level of gain I was hoping for. The amp sounds very dynamic at high level and with the clarity of the 01a.

01a mule

This is indeed a clear winner. I will leave this preamp on my system for a while to confirm further impressions. For now, I just simply love it.

01a Low Gain DHT preamp

How many times I’ve been asked “how do I lower the gain of the DHT preamp?” many builders love the DHT sound and yet don’t really need that gain. Of course when you use a transformer load, step down is the obvious choice. And it works really well when you invest in a very good quality OPT.

However, when you use DHT with high rp, generally most of the low current ones, you face a tough challenge with regard to frequency response.

With the hybrid mu-follower topology (aka gyrator) we have the problem that the gain is fixed to nearly mu.

I’m in love with the DHT sound and in a preamp a 01a and the 801a/VT-25 DHT Preamp Update preamp cannot be beaten in my view. They all deliver a gain of 8 with a hybrid mu-follower topology.

This can be overcome in the following way: Continue reading “01a Low Gain DHT preamp”

UV-201a final version – finished!

After doing all the soldering part (which I enjoy much), the preamp is now finished. It sounds as good as the original breadboard:

For the curious ones, here you have a picture of the inside:

The teflon sockets are bolted straight into the 4mm top aluminium plate. No microphonic noise this way. Rod Coleman V7 regulators set to 200mA. A pair of Russian Military NOS wire-wound resistors in parallel provides the filament bias. The gyrator PCB is set as per original circuit and each valve at 3mA. These are DC coupled to the MOSFET follower PCB set at 10mA each. The output is then taken out from a pair of FT-3 teflon caps. 

Now to enjoy this beauty!

UV-201a DHT Preamp Revisited


I previously implemented a preamp with the UV-201a. These are very old globe valves, somehow fragile and hard to get in good shape. Despite all this, it’s a superb valve. I have managed to acquire a decent set of them to pair the best valves to use in my preamp.

Recently I developed a prototype PCB for the source follower circuit. The source follower is ideal to place at the output of this preamp due to its low driving current. My 4P1L PSE amplifier will be pleased with more current to pump the Miller capacitance effectively. 

Continue reading “UV-201a DHT Preamp Revisited”

CX-301a DHT Pre-amp Build from Malaysia

A fantastic build of the 01a preamp using the gyrator PCB from Cheah:

I have just completed my 01a preamp with STP3NK60ZFP output follower. The preamp sounded great !!

A great looking preamp using Rod Coleman’s regulators, output follower and V-Cap capacitors. The jFET is BF862

Well done Cheah!

Building gyrator boards

I’ve been on some business travel so haven’t had much time to work on stuff, however I did get a set of gyrator boards for a friend and a customer:

  1. BF862 configured for 4P1L preamp
  2. 2SK170 configured for 01a preamp

4P1L preamp with BF862 gyrator

Many have asked me about this preamp with gyrator load. Here is the latest implementation which I preferred most in terms of sound. The mu resistor is 470Ω which is a nice compromise between BF862 transconductance and distortion. I adjusted it on test. I use a 100nF for C1 so R6 is 10MΩ. R4 can be either 300KΩ, 330KΩ or even 390KΩ. Difference would be only on the voltage range for the CCS. I found running it at 25mA to be perfectly fine, some BF862 can even do J310. I prefer this SMD compared to the J310. It performs much better even at high frequency:

4p1l-preamp-gen1b-gyrator-pcb-detailed

 

4P1L gyrator boards
4P1L gyrator boards
Continue reading “Building gyrator boards”

Tony’s 01a Preamp

IMG_3291I went to see my friend Tony today and helped him to fix his 01a preamp implementation. Time ago Tony used a prototype version of my gyrator PCB to build the Gen2 preamp with the addition of an output follower to address the slew rate limitations he had on his system due to the larger capacitive load.

Luckily we found the fault easily and it was a bad solder in one of the smoothing HT chokes. Once fault was rectified, we proceeded to take some measurements of this preamp.

Continue reading “Tony’s 01a Preamp”

Russian PSE in Steroids (01a into 4P1L) – Part IV

AM-cartoon-serie2_0004More power

Our previous west meets east circuit can be improve further. In fact, a compromise made with the filament bias design is that coupling between driver (FET follower) and the output stage wasn’t DC. We want DC coupling to get best performance, to ensure we can drive well the output stage and provide sufficient grid current even when not operating in A2.  This can be done with filament bias, however, since we are already introducing a negative supply, I’d prefer removing the filament bias and go for proper grid bias to get best performance of output stage in terms of  maximum power and linearity.

The below circuit can be easily implemented with just few modifications from previous version:

01a-4P1L-PSE-v05

What has changed here? Not much, the coupling cap C2 is now between the gyrator and the FET follower. The gate bias resistor R6 provides high impedance to the gyrator load to ensure maximum performance of the 01a driver (minimum distortion given size of load). Not as good as previous version, but good enough. The R6 is connected to a potentiometer which sets the bias voltage. The bias voltage is derived from V2, the -50V negative supply. You can see that this circuit will put more stress into the M1 FET as now there is an additional 25V of drop across it so power burned on this device increases.

The output of the follower is directly coupled (DC) to the output stage. The filament bias resistors are removed and we use the Coleman regulators directly on the filaments of the 4P1L.

This amplifier responds better to the grid current of the output stage once the output power goes over 3.5W. At 4.5W the distortion is just above 3% (3.2%) with a 3Vpp input signal. A tad more and you can get to the 5W and a bit more into A2 operation.

Russian PSE in Steroids (01a into 4P1L) – Part III

From Russia with Love

Copyright by Justmeans
East-West Divide, Copyright by Justmeans

The interesting combination to explore from our previous designs is to mix some western valves like 01a into the Russian parade.

The result would be quite interesting, as the sound of the 01a has proven to be amazing. Therefore 01a driving 4P1L is possible as the 4P1L doesn’t need a lot of drive. Instead of using 4P1L as a driver, we can opt for the 01a which has a similar gain. What is interesting is that the voltage swing required by 4P1L wouldn’t force the 01a outside the zone in which is highly linear, hence, with some modifications, it can work as a great driver here.

The circuit

01a into 4P1L PSE
01a into 4P1L PSE

Instead of starving the filaments of the 01a, given the voltage swing requirements for a driver, we ought to drive it at full tilt. In the circuit above, the 01a hasn’t got the stones to drive the 4P1L pair, therefore we have added a cathode follower as explained here. The M1 follower will then drive easily the output stage.