Short of sand

Firstly, my apologies. It’s been long overdue to get back on this blog. I receive several emails from people asking me to share more. I hope I will, when I get the time and energy to get back on hi-fi audio projects. I still work a lot on synthesisers which keeps me very busy when I catch a glimpse of free time from my hectic day life.

We’ve all been hit by the short of semiconductors. Yet, the HV precious parts are in shortage as well. Luckily some of the key parts like LDN150 and IXTP08N100D2 are back in stock, not sure for how long. These are key parts for building any CCS or hybrid mu-followers for audio circuits.

Continue reading “Short of sand”

LL1943 / LL1933 SUT PCB V02 – Balanced option

After a long time, decided to update the PCB of the LL1943 SUT to provide extra flexibility on the grounding connection. This is in essence to ensure no ground loops and noise when either using balanced or un-balanced cabling from the cartridge into the PCB:

LL1943: note the additional jumpers added

The additional jumpers are in line with the recommendations from the Datasheet. Here is the diagram:

For a fixed connection (like in most of the cases once preamp has been tuned/optimised) you can replace the jumpers by solid core wire jumpers soldered to the pad for best connection and performance.

This PCB is also for the LL1933. Basically is the same SUT but with 1+1:8+8 instead of 1+1:16+16 windings.

I made a small batch (I won’t need more than 2 or 4! myself) so the remaining will go on first-come-first-serve basis.

The low gain DHT pre-amp library

For more than 10 years I’ve been experimenting, designing and enjoying DHT pre-amps. Without over-dwelling on this subject, to me DHT preamps bring the unique sound transparency and detail we all seek for. They can make night or day difference in any system. And is not about gain, hence I’m focusing on sharing this blog entry.

Continue reading “The low gain DHT pre-amp library”

01a Low Gain DHT preamp

How many times I’ve been asked “how do I lower the gain of the DHT preamp?” many builders love the DHT sound and yet don’t really need that gain. Of course when you use a transformer load, step down is the obvious choice. And it works really well when you invest in a very good quality OPT.

However, when you use DHT with high rp, generally most of the low current ones, you face a tough challenge with regard to frequency response.

With the hybrid mu-follower topology (aka gyrator) we have the problem that the gain is fixed to nearly mu.

I’m in love with the DHT sound and in a preamp a 01a and the 801a/VT-25 DHT Preamp Update preamp cannot be beaten in my view. They all deliver a gain of 8 with a hybrid mu-follower topology.

This can be overcome in the following way: Continue reading “01a Low Gain DHT preamp”

Ba DHT Spice Model

I really love the Ba DHT preamp, if you need the gain in your system, is likely to be one of the best sounding DHT preamps in my experience. As received many requests for the SPICE model for the Ba DHT, here it is:

**** Ba TRIODE Composite DHT *****************************************
* Created on 10/13/2017 18:33 using paint_kit.jar 2.9
* www.dmitrynizh.com/tubeparams_image.htm
*
* Traced and model by Ale Moglia valves@bartola.co.uk
* (c) 2017 Ale Moglia and Bartola Ltd. UK
* www.bartola.co.uk/valves
*———————————————————————————-
.SUBCKT DHT_Ba 1 2 3 4 ; P G K1 K2
+ PARAMS: CCG=1P CGP=3.8P CCP=1P RFIL=7
+ MU=14 KG1=8940 KP=84 KVB=5232 VCT=-3.5 EX=1.47 RGI=2000
* Vp_MAX=350 Ip_MAX=10 Vg_step=1 Vg_start=0 Vg_count=11
* Rp=4000 Vg_ac=55 P_max=1.5 Vg_qui=-48 Vp_qui=300
* X_MIN=75 Y_MIN=51 X_SIZE=492 Y_SIZE=530 FSZ_X=1192 FSZ_Y=679 XYGrid=false
* showLoadLine=n showIp=y isDHT=y isPP=n isAsymPP=n showDissipLimit=y
* showIg1=n gridLevel2=n isInputSnapped=n
* XYProjections=n harmonicPlot=n harmonics=y
*———————————————————————————-
RFIL_LEFT 3 31 {RFIL/4}
RFIL_RIGHT 4 41 {RFIL/4}
RFIL_MIDDLE1 31 34 {RFIL/4}
RFIL_MIDDLE2 34 41 {RFIL/4}
E11 32 0 VALUE={V(1,31)/KP*LOG(1+EXP(KP*(1/MU+V(2,31)/SQRT(KVB+V(1,31)*V(1,31)))))}
E12 42 0 VALUE={V(1,41)/KP*LOG(1+EXP(KP*(1/MU+V(2,41)/SQRT(KVB+V(1,41)*V(1,41)))))}
RE11 32 0 1G
RE12 42 0 1G
G11 1 31 VALUE={(PWR(V(32),EX)+PWRS(V(32),EX))/(2*KG1)}
G12 1 41 VALUE={(PWR(V(42),EX)+PWRS(V(42),EX))/(2*KG1)}
RCP1 1 34 1G
C1 2 34 {CCG} ; CATHODE-GRID
C2 2 1 {CGP} ; GRID=PLATE
C3 1 34 {CCP} ; CATHODE-PLATE
D3 5 3 DX ; FOR GRID CURRENT
D4 6 4 DX ; FOR GRID CURRENT
RG1 2 5 {2*RGI} ; FOR GRID CURRENT
RG2 2 6 {2*RGI} ; FOR GRID CURRENT
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS
*$

You can download the file here: Ba spice triode model

 

The return of the Mule (RE084)

It’s been a while since I experimented with preamps again. I settled as a permanent setup with my 01a/ER801a which I love. However, I wanted to continue with my experiments so I built a new Mule, let’s call it “Mule 2” for now. It’s based out of multiple PCBs which simplifies the construction process and reduces build time:

 

The Mule is back!

Continue reading “The return of the Mule (RE084)”

Mini Hybrid Mu-follower board test

 I had a  go first at a mini-gyrator board using SMD. Blimey, it’s hard work to get all these crammed into such a small footprint.
I did a quick test with a D3a and worked fine at 100V/10mA (low voltage of course). It was +35dB flat up until a couple of Mhz. Even the over-current LED works!
Footprint is as small as you can get: 45mm x 25mm 🙂
More to report later!

UX-120 DHT

I’ve got hold of a NOS quartet of UX-120 Radiotron valves made in 1925. These are 95 year old beauties. Unbelievable how well conserved they are and operate.

This valve developed by RCA was the first output valve intended to be used with dry-cells (3 No. 6 cells in series). See the data sheet extract below:

There is no much data available on this valve, if you have some please share and let me know. Here are the curves I traced from a sample which measured 114%:

Continue reading “UX-120 DHT”

Modular approach (Part I)

As time is very limited these days, I’m focused in continuing my modular building approach in LEGO style. I have developed several PCB modules which are flexible to be used in multiple amplifier and pre-amplifier designs. Now, I used the power of PCBs to build some additional supporting modules to speed up my breadboarding over the IKEA boards. Not the most elegant approach, but building becomes a very fast process this way.

You will see what I’m saying when you see a few of the following additions:

Turret and 2mm female connectors in a strip

Continue reading “Modular approach (Part I)”