Robustiano (Version 0.4)

Finally back home after a long trip and had the opportunity to put the DN2540 at test and try the topologies discussed for the “Schade” feedback 4P1L SE amplifier. So I re-build my test rig and tried the DN2540 and LND150 at various drain currents. It was clearly to see that in order to keep distortion to a minimum, the VDS needs to be greater than 60V to keep the output capacitance of the FET low. Here are the results of the frequency response at nearly maximum output power (Po=2W):

Robustiano 4P1L VER 0.4 DRIVER TESTSIt is interesting to see that the LND150 which has Coss (max) of 3.5pF doesn’t perform much better than the DN2540 which has Coss (max) of about 30pF. Operating points are different for both FETs but the 4P1L is running about the same operating conditions. What is also interesting to verify with this test is that the higher the drain current, the more capability the FET has to drive the 4P1L input (and Coss) capacitance at higher frequencies as the slew rate of the FET is higher.

ROBUSTIANO 4P1L VER04 THD VS POWER

We can see an interesting improvement from my initial tests at 5mA when drain current was just about 1.5mA. The yellow trace (Id=5mA) shows the best performance of the DN2540. Surely higher drain current will perform better but at a cost as the drain current is part of the OT primary current.

So how do we keep the gain of the FET when increasing the drain current? The natural approach will be to reduce Rf, but this affects the FET gain and the feedback. The alternative is to increase the supply voltage respect to ground. The price we pay here is to increase the cathode resistor and burning the power on it. With -4V as the negative source supply voltage, I had to only reduce RF to 51.5K to set 5mA on the DN2540. The supply power was increased to 350V, the screen (Vg2k) to about 140V (240-98.6V) which is lower than the 150V used before. There is a tad of extra power to extract on the 4P1L but here is close to its maximum dissipation. The Rk is a pair of wirewound 4K7 in parallel.

Robustiano 4P1L SE Schade v01.

 

 

 

 

 

 

 

 

 

 

 

I think it is now time to try the BJT driver. I suspect that it will need at least 5mA of collector current to get on with the task of the input capacitance of the 4P1L when anode to grid feedback is in place.

cheers

Ale

 

 

Author: Ale Moglia

"A mistake is always forgivable, rarely excusable and always unacceptable. " (Robert Fripp)

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.